Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Food Funct ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747250

RESUMO

Ulcerative colitis (UC) is a common chronic inflammatory disease that causes serious harm to human health. Probiotics have the effect of improving UC. This study evaluated the preventative potential of water-in-oil-in-water (W1/O/W2) emulsions containing both probiotics and fish oil on UC and associated anxiety-like behavior using a mice model. UC model was established in mice by administering dextran sulfate sodium salt (DSS). Free probiotics, probiotic-loaded emulsions, or fish oil and probiotic co-loaded emulsions were then orally administered to the mice. Various bioassays, histological studies, 16s rDNA gene sequencing, and behavioral experiments were conducted to assess changes in the intestinal environment, microbiota, and anxiety-like behavior of the mice. The fish oil and probiotic co-loaded emulsions significantly reduced the inflammatory response by enhancing tight junction protein secretion (ZO-1, Occludin, and Claudin-1), inhibiting pro-inflammatory factors (TNF-α, and IL-1ß), and promoting short-chain fatty acids (SCFAs) production. These emulsions also modified the gut microbiota by promoting beneficial bacteria and suppressing pathogenic bacteria, thereby restoring a balanced gut microbiota. Notably, the emulsions containing both probiotics and fish oil also ameliorated anxiety-like behavior in the mice. The co-delivery of probiotics and fish oil using W1/O/W2 emulsions has shown significant promise in relieving UC and its associated anxiety-like behavior. These findings provide novel insights into the development of advanced therapeutic strategies for treating UC.

2.
Int J Biol Macromol ; : 132313, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740156

RESUMO

The application of many hydrophilic and hydrophobic nutraceuticals is limited by their poor solubility, chemical stability, and/or bioaccessibility. In this study, a novel Pickering high internal phase double emulsion co-stabilized by modified pea protein isolate (PPI) and sodium alginate (SA) was developed for the co-encapsulation of model hydrophilic (riboflavin) and hydrophobic (ß-carotene) nutraceuticals. Initially, the effect of emulsifier type in the external water phase on emulsion formation and stability was examined, including commercial PPI (C-PPI), C-PPI-SA complex, homogenized and ultrasonicated PPI (HU-PPI), and HU-PPI-SA complex. The encapsulation and protective effects of these double emulsions on hydrophilic riboflavin and hydrophobic ß-carotene were then evaluated. The results demonstrated that the thermal and storage stabilities of the double emulsion formulated from HU-PPI-SA were high, which was attributed to the formation of a thick biopolymer coating around the oil droplets, as well as thickening of the aqueous phase. Encapsulation significantly improved the photostability of the two nutraceuticals. The double emulsion formulated from HU-PPI-SA significantly improved the in vitro bioaccessibility of ß-carotene, which was mainly attributed to inhibition of its chemical degradation under simulated acidic gastric conditions. The novel delivery system may therefore be used for the development of functional foods containing multiple nutraceuticals.

3.
Food Res Int ; 185: 114277, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38658069

RESUMO

For some food applications, it is desirable to control the flavor release profiles of volatile flavor compounds. In this study, the effects of crosslinking method and protein composition on the flavor release properties of emulsion-filled protein hydrogels were explored, using peppermint essential oil as a model volatile compound. Emulsion-filled protein gels with different properties were prepared using different crosslinking methods and gelatin concentrations. Flavor release from the emulsion gels was then monitored using an electronic nose, gas chromatography-mass spectrometry (GC-MS), and sensory evaluation. Enzyme-crosslinked gels had greater hardness and storage modulus than heat-crosslinked ones. The hardness and storage modulus of the gels increased with increasing gelatin concentration. For similar gel compositions, flavor release and sensory perception were faster from the heat-crosslinked gels than the enzyme-crosslinked ones. For the same crosslinking method, flavor release and perception decreased with increasing gelatin concentration, which was attributed to retardation of flavor diffusion through the hydrogel matrix. Overall, this study shows that the release of hydrophobic aromatic substances can be modulated by controlling the composition and crosslinking of protein hydrogels, which may be useful for certain food applications.


Assuntos
Emulsões , Aromatizantes , Cromatografia Gasosa-Espectrometria de Massas , Mentha piperita , Óleos de Plantas , Mentha piperita/química , Emulsões/química , Humanos , Óleos de Plantas/química , Aromatizantes/química , Gelatina/química , Reagentes de Ligações Cruzadas/química , Paladar , Hidrogéis/química , Nariz Eletrônico , Masculino , Feminino , Adulto
4.
Environ Res ; 252(Pt 2): 118813, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38574985

RESUMO

After the second industrial revolution, social productivity developed rapidly, and the use of fossil fuels such as coal, oil, and natural gas increased greatly in industrial production. The burning of these fossil fuels releases large amounts of greenhouse gases such as CO2, which has caused greenhouse effects and global warming. This has endangered the planet's ecological balance and brought many species, including animals and plants, to the brink of extinction. Thus, it is crucial to address this problem urgently. One potential solution is the use of syngas fermentation with microbial cell factories. This process can produce chemicals beneficial to humans, such as ethanol as a fuel while consuming large quantities of harmful gases, CO and CO2. However, syngas-fermenting microorganisms often face a metabolic energy deficit, resulting in slow cell growth, metabolic disorders, and low product yields. This problem limits the large-scale industrial application of engineered microorganisms. Therefore, it is imperative to address the energy barriers of these microorganisms. This paper provides an overview of the current research progress in addressing energy barriers in bacteria, including the efficient capture of external energy and the regulation of internal energy metabolic flow. Capturing external energy involves summarizing studies on overexpressing natural photosystems and constructing semiartificial photosynthesis systems using photocatalysts. The regulation of internal energy metabolic flows involves two parts: regulating enzymes and metabolic pathways. Finally, the article discusses current challenges and future perspectives, with a focus on achieving both sustainability and profitability in an economical and energy-efficient manner. These advancements can provide a necessary force for the large-scale industrial application of syngas fermentation microbial cell factories.

5.
Compr Rev Food Sci Food Saf ; 23(3): e13322, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38597567

RESUMO

Adequate intake of live probiotics is beneficial to human health and wellbeing because they can help treat or prevent a variety of health conditions. However, the viability of probiotics is reduced by the harsh environments they experience during passage through the human gastrointestinal tract (GIT). Consequently, the oral delivery of viable probiotics is a significant challenge. Probiotic encapsulation provides a potential solution to this problem. However, the production methods used to create conventional encapsulation technologies often damage probiotics. Moreover, the delivery systems produced often do not have the required physicochemical attributes or robustness for food applications. Single-cell encapsulation is based on forming a protective coating around a single probiotic cell. These coatings may be biofilms or biopolymer layers designed to protect the probiotic from the harsh gastrointestinal environment, enhance their colonization, and introduce additional beneficial functions. This article reviews the factors affecting the oral delivery of probiotics, analyses the shortcomings of existing encapsulation technologies, and highlights the potential advantages of single-cell encapsulation. It also reviews the various approaches available for single-cell encapsulation of probiotics, including their implementation and the characteristics of the delivery systems they produce. In addition, the mechanisms by which single-cell encapsulation can improve the oral bioavailability and health benefits of probiotics are described. Moreover, the benefits, limitations, and safety issues of probiotic single-cell encapsulation technology for applications in food and beverages are analyzed. Finally, future directions and potential challenges to the widespread adoption of single-cell encapsulation of probiotics are highlighted.


Assuntos
Encapsulamento de Células , Probióticos , Humanos , Trato Gastrointestinal , Biofilmes
6.
Crit Rev Food Sci Nutr ; : 1-22, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520117

RESUMO

(-)-Epigallocatechin-3-gallate (EGCG) is a natural phenolic substance found in foods and beverages (especially tea) that exhibits a broad spectrum of biological activities, including antioxidant, antimicrobial, anti-obesity, anti-inflammatory, and anti-cancer properties. Its potential in cardiovascular and brain health has garnered significant attention. However, its clinical application remains limited due to its poor physicochemical stability and low oral bioavailability. Nanotechnology can be used to improve the stability, efficacy, and pharmacokinetic profile of EGCG by encapsulating it within nanoparticles. This article reviews the interactions of EGCG with various compounds, the synthesis of EGCG-based nanoparticles, the functional attributes of these nanoparticles, and their prospective applications in drug delivery, diagnosis, and therapy. The potential application of nanoencapsulated EGCG in functional foods and beverages is also emphasized. Top-down and bottom-up approaches can be used to construct EGCG-based nanoparticles. EGCG-based nanoparticles exhibit enhanced stability and bioavailability compared to free EGCG, making them promising candidates for biomedical and food applications. Notably, the non-covalent and covalent interactions of EGCG with other substances significantly contribute to the improved properties of these nanoparticles. EGCG-based nanoparticles appear to have a wide range of applications in different industries, but further research is required to enhance their efficacy and ensure their safety.

7.
World J Gastrointest Endosc ; 16(2): 83-90, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38464817

RESUMO

BACKGROUND: Gastric phytobezoars (GPBs) are very common in northern China. Combined therapy involving carbonated beverage consumption and endoscopic lithotripsy has been shown to be effective and safe. Existing studies on this subject are often case reports highlighting the successful dissolution of phytobezoars through Coca-Cola consumption. Consequently, large-scale prospective investigations in this domain remain scarce. Therefore, we conducted a randomized controlled trial to examine the effects of Coca-Cola consumption on GPBs. AIM: To evaluate the impact of Coca-Cola on GPBs, including the dissolution rate, medical expenses, ulcer rate, and operation time. METHODS: A total of 160 consecutive patients diagnosed with GPBs were allocated into two groups (a control group and an intervention group) through computer-generated randomization. Patients in the intervention group received a Coca-Cola-based regimen (Coca-Cola 2000-4000 mL per day for 7 d), while those in the control group underwent emergency fragmentation. RESULTS: Complete dissolution of GPBs was achieved in 100% of the patients in the intervention group. The disparity in expenses between the control group and intervention group (t = 25.791, P = 0.000) was statistically significant, and the difference in gastric ulcer occurrence between the control group and intervention group (χ2 = 6.181, P = 0.013) was also statistically significant. CONCLUSION: Timely ingestion of Coca-Cola yields significant benefits, including a complete dissolution rate of 100%, a low incidence of gastric ulcers, no need for fragmentation and reduced expenses.

8.
Curr Res Food Sci ; 8: 100653, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38204878

RESUMO

Pea protein has attracted widespread attention due to its high nutritional value, low allergenicity, non-GMO status, and broad availability. However, compared to animal proteins, pea protein has inferior functional properties, which limits its application in the food industry. This study used pea protein isolate (PPI) as the main raw material and investigated the effects of high-pressure homogenization (HPH), ultrasonic treatment (US), and the combination of the two in different orders on the structure and function of PPI. The results showed that HPH or US promoted the transformation of PPI insoluble suspension into a uniform protein dispersion, significantly reducing particle size, unfolding the spatial structure, exposing more amino acid residues. These structural changes resulted in a substantial increase in the solubility, foaming capacity and emulsifying activity of PPI. Moreover, the combined treatments further impacted the properties of PPI, largely depending on the order of the processing steps; the combination of HPH-US exhibited the best functional characteristics.

9.
Food Chem ; 441: 138292, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38183717

RESUMO

Goat whey protein (GWP) has a rich amino acid profile and good techno-functional attributes but still has limited functional performance for certain applications. This study introduces an innovative ultrasound-assisted Maillard reaction to enhance GWP's functional properties by conjugating it with either gum Arabic (GA) or citrus pectin (CP). Sonication accelerated the Maillard reaction, and the glycosylation of GWP was significantly enhanced after optimization of the conjugation conditions. Gel electrophoresis examination verified the creation of GWP-polysaccharide conjugates, while scanning electron microscopy analysis revealed structural modifications caused by polysaccharide grafting and sonication. The use of ultrasound in the Maillard reaction notably enhanced the solubility, foaming capacity, and emulsifying attributes of the GWPs. Among the conjugates, the GWP-GA ones exhibited the best functional properties. Our findings suggest that this approach can notably improve the functional attributes of GWPs, thus broadening their potential uses in the food sector and beyond.


Assuntos
Cabras , Reação de Maillard , Animais , Proteínas do Soro do Leite/química , Emulsões/química , Glicosilação , Goma Arábica/química , Polissacarídeos
10.
Food Chem ; 441: 138358, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38266315

RESUMO

Protein microgels are emerging as versatile soft particles due to their desirable interfacial activities and functional properties. In this study, pea protein isolate microgel particles (PPIMP) were prepared by heat treatment and transglutaminase crosslinking, and PPIMP were non-covalently and covalently modified with sodium alginate (SA). The effects of polymer ratio and pH on the formation of PPIMP-SA mixtures and conjugates were investigated. The optimal ratio of PPIMP and SA was found to be 20:1, with the optimal pH being 7 and 10, respectively. PPIMP-SA conjugates were prepared by Maillard reaction. It was found that ultrasound (195 W, 40 min) enhanced the degree of glycation of PPIMP, with a highest value of 37.21 ± 0.71 %. SDS-PAGE, browning intensity and FTIR data also confirmed the formation of PPIMP-SA conjugates. Compared with PPIMP and PPIMP-SA mixtures, PPIMP-SA conjugates exhibited better thermal stability, antioxidant, emulsifying and foaming properties, which opens up opportunities for protein microgel in various food applications.


Assuntos
Microgéis , Proteínas de Ervilha , Emulsões/química , Alginatos , Proteínas de Ervilha/química , Antioxidantes/química
11.
Adv Colloid Interface Sci ; 320: 102999, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37783067

RESUMO

Research on the design, fabrication, and application of double network (DN) hydrogels, assembled from pairs of polymers, has grown recently due to their unique structural, physicochemical, and functional properties. DN hydrogels can be designed to exhibit a broader range of functional attributes than single network (SN) ones, which extends their applications in various fields. There has been strong interest in the development of biopolymer DN hydrogels because of their environmental, sustainability, and safety benefits. However, there is limited knowledge on the formation and application of these novel materials. This article reviews the principles underlying the design and fabrication of hydrogels using different crosslinking approaches, including covalent and/or non-covalent bonding, and the formation mechanisms, network structures, and functional attributes of different DN hydrogels. The impact of polymer composition, structural organization, and bonding on the mechanical and functional properties of DN hydrogels is reviewed. Potential applications of these hydrogels are highlighted, including in tissue engineering, biomedicines, and foods. The functional attributes of DN hydrogels can be tailored to each of these applications by careful selection of the biopolymers and crosslinking mechanisms used to assemble them. Finally, areas where further research are needed to overcome the current limitations of DN hydrogels are highlighted.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Materiais Biocompatíveis/química , Hidrogéis/química , Engenharia Tecidual , Polímeros
12.
Int J Biol Macromol ; 253(Pt 8): 127557, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37865360

RESUMO

In the work, zein-yeast carboxymethyl glucan (ZY) particles were fabricated by a novel ultrasonic assisted anti-solvent precipitation (ASP) method, which was a good delivery system for resveratrol. The particle size and zeta-potential of ZY samples were detected by Zetasizer Pro analyzer, they gradually increased as the mass ratio of zein and yeast carboxymethyl glucan (YCG) changed from 10:1 to 10:5. The intermolecular interactions were investigated by zeta-potentiometric analyzer, Fourier transform infrared spectroscopy and fluorescence spectroscopy. Electrostatic interaction, hydrogen bonding and hydrophobic effects between zein and YCG molecules were identified as the main driving forces in the formation of ZY particles. The optimized ZY (10:3) binary particles were used as delivery system for encapsulating and protecting resveratrol. They had high encapsulation efficiency (85.4 %) and loading capacity (6.1 %), and increased the retention rate of resveratrol by 2.10 and 1.21 folds after exposure to light and heat conditions, effectively protect resveratrol against light and thermal degradation. These particles also delayed the release of resveratrol in simulated gastrointestinal digestion, which might improve its oral bioavailability. In conclusion, ZY binary particles could be regarded as a useful and promising delivery vehicle, which might contribute to the application of hydrophobic bioactive ingredients in functional foods.


Assuntos
Nanopartículas , Zeína , Glucanos , Saccharomyces cerevisiae , Zeína/química , Resveratrol , Nanopartículas/química , Tamanho da Partícula
13.
J Agric Food Chem ; 71(42): 15429-15444, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37824166

RESUMO

Plant proteins are high-quality dietary components of food products. With the growing interest in sustainable and healthy food alternatives, plant proteins have gained significant attention as viable substitutes for animal-based proteins. Understanding the diversity of protein sources derived from plants, novel processing technology, and multiple applications is crucial for developing nutritious and sustainable plant protein-based products. This Review summarizes the natural sources of traditional and emerging plant proteins. The classifications, processing technologies, and applications of plant protein-based products in the food industry are explicitly elucidated. Moreover, the advantages and disadvantages of plant protein-based food products are revealed. Strategies such as protein fortification and complementation to overcome these shortcomings are critically discussed. We also demonstrate several issues that need to be addressed in future development.


Assuntos
Proteínas de Plantas , Plantas , Animais , Indústria Alimentícia , Tecnologia
14.
Mar Biotechnol (NY) ; 25(6): 935-950, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37743437

RESUMO

Among all the paralytic shellfish toxins (PSTs)-producing algae, Alexandrium tamarense is one of the most widespread harmful species posing a serious threat to marine resources and human health. Therefore, it is extremely important to establish a rapid and accurate monitoring method for A. tamarense that can provide early warnings of harmful algal blooms (HABs) caused by this alga and limit the contamination due to PSTs. In this study, an ssDNA library was first obtained by whole cell systematic evolution of ligands by exponential enrichment after 18 consecutive rounds of iterative screening. After sequencing in combination with subsequent multiple alignment of sequences and secondary structure simulation, the library could be classified into 2 families, namely, Family1 and Family2, according to sequence similarity. Flow cytometry was used to test the affinity and cross-reactivity of Ata19, Ata6, Ata25 and Ata29 belonging to Family2. Ata19 was selected to be modified by truncation, through which a new resultant aptamer named as Ata19-1-1 was obtained. Ata19-1-1 with a KD of 75.16 ± 11.10 nM displayed a much higher affinity than Ata19. The specificity test showed that Ata19-1-1 has the same discrimination ability as Ata19 and can at least distinguish the target microalga from other microalgae. The observation under a fluorescence microscopy showed that the A. tamarense cells labeled with Ata19-1-1 are exhibiting bright green fluorescence and could be easily identified, factually confirming the binding of the aptamer with target cells. In summary, the aptamer Ata19-1-1 produced in this study may serve as an ideal molecular recognition element for A. tamarense, which has the potential to be developed into a novel detection method for this harmful alga in the future.


Assuntos
Dinoflagellida , Toxinas Marinhas , Humanos , Toxinas Marinhas/metabolismo , Dinoflagellida/genética , Proliferação Nociva de Algas
15.
Food Chem ; 429: 136394, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37478605

RESUMO

High internal phase Pickering emulsions (HIPPEs) stabilized by protein nanoparticles have been widely reported, but the use of enzymatic methods for preparing these nanoparticles remains underexplored. Our hypothesis is that enzymatically crosslinked α-lactalbumin (ALA) nanoparticles (ALATGs) prepared using transglutaminase will demonstrate improved properties as stabilizers for HIPPEs. In this study, we investigated the physicochemical properties and microstructures of ALATGs, finding that enzymatic crosslinking could be enhanced by removing Ca2+ ions from ALA and preheating the proteins (85 °C, 15 min). The electrical charge, secondary structure, and surface hydrophobicity of ALATGs were found to depend on crosslinking conditions. HIPPEs formed with an ALA concentration of 10 mg/mL and an enzyme activity of 120 U/g exhibited the highest apparent viscosity and mechanical strength, as well as significantly improved loading capacity and photostability for the encapsulated lycopene. Overall, our results support the hypothesis that ALATG-nanoparticles show superior performance as emulsifiers compared to ALA-nanoparticles.


Assuntos
Lactalbumina , Nanopartículas , Lactalbumina/química , Licopeno , Interações Hidrofóbicas e Hidrofílicas , Emulsões/química , Nanopartículas/química , Fatores de Transcrição , Tamanho da Partícula
16.
Food Chem ; 426: 136390, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37307740

RESUMO

The production and consumption of functional foods has become an essential food industry trend. Due to its high nutritional content, quinoa is regarded as a super pseudocereal for the development of nutritious foods. However, the presence of antinutritional factors and quinoa's distinctive grassy flavor limit its food applications. Due to its benefits in enhancing the nutritional bioavailability and organoleptic quality of quinoa, germination has garnered significant interest. To date, there is no systematic review of quinoa germination and the health benefits of germinated quinoa. This review details the nutritional components and bioactivities of germinated quinoa, as well as the potential mechanisms for the accumulation of bioactive compounds during the germination process. Additionally, evidence supporting the health benefits of germinated quinoa, the current status of related product development, and perspectives for future research are presented. Thus, our research is likely to provide theoretical support for the use of germinated quinoa resources.


Assuntos
Chenopodium quinoa , Chenopodium quinoa/química , Sementes/química , Alimento Funcional/análise , Manipulação de Alimentos , Valor Nutritivo
17.
Gels ; 9(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37232996

RESUMO

Hydrogels are three-dimensional polymer networks derived from hydrophilic macromonomers, which can be categorized as natural, synthetic, or hybrid hydrogels [...].

18.
Microb Pathog ; 180: 106150, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37196678

RESUMO

Pelophylax nigromaculatus is a common commercial specie of frogs that generally cultured throughout China. With the application of high-density culture, P. nigromaculatus can be co-infected by two or more pathogens, which thereby induce synergistic influence on the virulence of the infection. In this study, two bacterial strains were simultaneously isolated from diseased frogs by incubating on Luria-Bertani (LB) agar. Isolates were identified as Klebsiella pneumoniae and Elizabethkingia miricola by morphological, physiological and biochemical features, as well as 16S rRNA sequencing and phylogenetic analysis. The whole genome of K. pneumoniae and E. miricola isolates consist single circular chromosome of 5,419,557 bp and 4,215,349 bp, respectively. The genomic sequence analysis further indicated that K. pneumoniae isolate conserved 172 virulent and 349 antibiotic-resistance genes, whereas E. miricola contained 24 virulent and 168 antibiotic resistance genes. In LB broth, both isolates could grow well at 0%-1% NaCl concentration and pH 5-7. Antibiotic susceptibility testing revealed that both K. pneumoniae and E. miricola were resistant to kanamycin, neomycin, ampicillin, piperacillin, carbenicillin, enrofloxacin, norfloxacin and sulfisoxazole. Histopathological studies showed that co-infection caused considerable lesions in the tissues of brain, eye, muscle, spleen, kidney and liver, including cell degeneration, necrosis, hemorrhage and inflammatory cell infiltration. The LD50 of K. pneumoniae and E. miricola isolates were 6.31 × 105 CFU/g and 3.98 × 105 CFU/g frog weight, respectively. Moreover, experimentally infected frogs exhibited quick and higher mortality under coinfection with K. pneumoniae and E. miricola than those single challenge of each bacterium. To date, no natural co-infection by these two bacteria has been reported from frogs and even amphibians. The results will not only shed light on the feature and pathogenesis of K. pneumoniae and E. miricola, but also highlight that co-infection of these two pathogen is a potential threat to black-spotted frog farming.


Assuntos
Coinfecção , Infecções por Klebsiella , Animais , Klebsiella pneumoniae , Coinfecção/veterinária , Filogenia , RNA Ribossômico 16S/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ranidae/microbiologia , Infecções por Klebsiella/microbiologia
19.
Int J Biol Macromol ; 242(Pt 4): 125109, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257529

RESUMO

Zein-quercetagetin-chondroitin sulfate (Zein-Que-CS) composite nanoparticles with different compositions were successfully fabricated using a novel antisolvent co-precipitation method. The mean particle diameter (97.5 to 219.4 nm), negative surface potential (-29.9 to -51.1 mV), and turbidity (265 to 370 NTU) of suspensions of Zein-Que nanoparticles increased after the addition of CS. Electrostatic attraction, hydrogen bonding, and hydrophobic attraction were the main driving forces for the formation of the composite nanoparticles. The encapsulation efficiency and loading capacity of the quercetagetin within the Zein-Que-CS (100:10:30) nanoparticles were 91.6 % and 6.1 %, respectively. The photostability and thermal stability of the encapsulated quercetagetin were 3.4- and 3.2- fold higher than that of the free form. The nanoparticles had good resistance to sedimentation and exhibited slow-release properties under simulated gastrointestinal conditions. The Zein-Que-CS nanoparticles developed in this study may therefore be useful for the encapsulation, protection, and delivery of quercetagetin.


Assuntos
Flavonas , Nanopartículas , Zeína , Zeína/química , Sulfatos de Condroitina , Tamanho da Partícula , Nanopartículas/química
20.
Environ Sci Pollut Res Int ; 30(21): 60500-60513, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37036653

RESUMO

It is urgent to develop techniques that can simultaneously detect multiple microalgae, due to the diversity of harmful algal blooms (HABs)-forming algal species. The target algae species in this study are Heterosigma akashiwo, Prorocentrum donghaiense and Karenia mikimotoi. These algae are the dominant species that cause HABs in the East China Sea, and the multiple detection technique focusing on these three algae is not common. Therefore, this study established a multiplex polymerase chain reaction(mPCR) to diagnose the three algae, which is simple and low cost. First, the corresponding specific primers were designed based on the D1-D2 region of the large subunit (LSU) ribosomal DNA sequence. Then, mPCR was established and the reaction conditions were optimized. And the specificity, sensitivity, and stability of mPCR were evaluated. The result of specificity test showed that the established mPCR had good specificity for the target microalgae and did not cross-react with eighteen non-target microalgae. The sensitivity of experiment was 3.3 × 10-1 ng µL-1, and the established mPCR was not affected by the interfering microalgae. Moreover, the practicability evaluation of mPCR by using the simulated natural water samples showed that the detection limit of target microalgae was 100 cells mL-1, which could meet the demand for early warning of HABs. In summary, the established mPCR is characterized by strong specificity, good stability, and multiple analysis to detect H. akashiwo, P. donghaiense, and K. mikimotoi.


Assuntos
Dinoflagellida , Microalgas , Microalgas/genética , Reação em Cadeia da Polimerase Multiplex , Dinoflagellida/genética , Proliferação Nociva de Algas , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA